841 research outputs found

    Freezing of Gait Detection in Parkinson's Disease: A Subject-Independent Detector Using Anomaly Scores

    Full text link
    Β© 2012 IEEE. Freezing of gait (FoG) is common in Parkinsonian gait and strongly relates to falls. Current clinical FoG assessments are patients' self-report diaries and experts' manual video analysis. Both are subjective and yield moderate reliability. Existing detection algorithms have been predominantly designed in subject-dependent settings. In this paper, we aim to develop an automated FoG detector for subject independent. After extracting highly relevant features, we apply anomaly detection techniques to detect FoG events. Specifically, feature selection is performed using correlation and clusterability metrics. From a list of 244 feature candidates, 36 candidates were selected using saliency and robustness criteria. We develop an anomaly score detector with adaptive thresholding to identify FoG events. Then, using accuracy metrics, we reduce the feature list to seven candidates. Our novel multichannel freezing index was the most selective across all window sizes, achieving sensitivity (specificity) of 96% (79%). On the other hand, freezing index from the vertical axis was the best choice for a single input, achieving sensitivity (specificity) of 94% (84%) for ankle and 89% (94%) for back sensors. Our subject-independent method is not only significantly more accurate than those previously reported, but also uses a much smaller window (e.g., 3 s versus 7.5 s) and/or lower tolerance (e.g., 0.4 s versus 2 s)

    Control of Vibrio parahaemolyticus (AHPND strain) and improvement of water quality using nanobubble technology

    Get PDF
    Nanobubble technology is used in wastewater treatment, but its disinfectant properties in aquaculture have not been clearly demonstrated. This study investigated the ability of nanobubbles to reduce Vibrio parahaemolyticus (AHPND strain) and to improve water quality. Two laboratory experiments were conducted over a one‐week period, that is (a) assessing the effects of air and oxygen nanobubbles for 60 minutes per day and (b) comparing effects of ozone nanobubble treatments for 2, 4 and 6 minutes per day. Experiments were done in triplicate 100 L tanks with 15‰ saline water, inoculated with an initial bacterial concentration of 106 CFU/ml. At the end of experiment 1, the bacterial concentration of the air and oxygen nanobubble groups was counted for 69% and 46% of the control group respectively. At the end of experiment 2, the bacterial concentration of the 2‐, 4‐ and 6‐minute ozone nanobubble groups were counted for 23%, 2.2% and 0% of the control group respectively. Oxygen and ozone nanobubbles significantly increased oxygen reduction potential and oxygen values. Results indicate that under effective dosages nanobubbles can be used in the production farms to control V.parahaemolyticus and increase oxygen levels

    Thermoresponsive Hybrid Colloidal Capsules as an Inorganic Additive for Fire-Resistant Silicone-Based Coatings

    Get PDF
    Improving the fire-resistant efficiency of silicone-based polymeric coatings is important in the building industry and electrical utilities. In this study, the water-containing hybrid calcium carbonate (CaCO3)–silica (SiO2) colloidal capsule has been developed and optimized as an inorganic flame-retardant additive. This capsule exhibits excellent thermal stability up to 1000 Β°C with a remaining intact hollow spherical structure. When used as an inorganic filler at 15 wt %, it not only reduces the potential fire hazards by over 44% (i.e., the sumHRC reduced from 112.00 J/g K to 62.00 J/g K) but also improves the heat-barrier efficiency by over 30% (i.e., the temperature at the steady state reduced from 350 to 360 Β°C to below 250 Β°C) of the silicone-based polymeric coatings. In addition, the capsule–polymer composite coating exhibits excellent ductility which can withstand heat-induced mechanical stresses and prevent crack propagation under radiative heating conditions. The fire-resistant mechanism of the colloidal capsule is related strongly to the encapsulated water core and the reactions between SiO2 and CaCO3 at elevated temperatures. They not only contribute to a cooling effect on the flammable pyrolysis gases but also induce the insulative effect to the resulted char during combustion. The significant advances in this study will have a high impact in customizing the functional inorganic additives for a better design of the flame-retardant composite coating

    Tribo-induced catalytically active oxide surfaces enabling the formation of the durable and high-performance carbon-based tribofilms

    Get PDF
    Carbon-containing tribofilms have attracted significant interest in the lubrication research despite a scarcity of information on their high-temperature performance under severe boundary conditions. In this study, high-temperature lubrication of the carbon tribofilm produced from cyclopropane carboxylic acid (CPCa) and NiAl-layered double hydroxide (LDH) nanoparticles was evaluated. NiAl-LDH nanoparticles significantly enhanced the friction stability and antiwear performance of CPCa by over 90% at 50Β°C and 100Β°C, comparable to the benchmark zinc dialkyldithiophosphates (ZDDPs). The highly graphitic amorphous carbon tribofilms and the fine-grain intermediate tribolayer constructed by the thermal decomposition products of NiAl-LDH contributed to such excellent lubrication performance. This study paves a pathway in developing functional anti-wear additives for the durable and high-performance carbon-containing tribofilms at high temperatures

    Neutrophil extracellular traps enhance early inflammatory response in Sendai virus-induced asthma phenotype

    Get PDF
    Paramyxoviral infection in childhood has been linked to a significant increased rate of asthma development. In mice, paramyxoviral infection with the mouse parainfluenza virus type I, Sendai virus (Sev), causes a limited bronchiolitis followed by persistent asthma traits. We have previously shown that the absence of cysteine protease dipeptidyl peptidase I (DPPI) dampened the acute lung inflammatory response and the subsequent asthma phenotype induced by Sev. Adoptive transfer of wild type neutrophils into DPPI-deficient mice restored leukocyte influx, the acute cytokine response, and the subsequent mucous cell metaplasia that accompanied Sev-induced asthma phenotype. However, the exact mechanism by which DPPI-sufficient neutrophils promote asthma development following Sev infection is still unknown. We hypothesize that neutrophils recruited to the alveolar space following Sev infection elaborate neutrophil extracellular traps (NETs) that propagate the inflammatory cascade, culminating in the eventual asthma phenotype. Indeed, we found that Sev infection was associated with NET formation in the lung and release of cell-free DNA complexed to myeloperoxidase (MPO) in the alveolar space and plasma that peaked on day 2-post infection. Absence of DPPI significantly attenuated Sev-induced NET formation in vivo and in vitro. Furthermore, concomitant administration of DNase 1, which dismantled NETs, or inhibition of peptidylarginine deiminase 4 (PAD4), an essential mediator of NET formation, suppressed the early inflammatory responses to Sev infection. Lastly, NETs primed bone marrow derived cells to release cytokines that can amplify the inflammatory cascade

    Attitudes and beliefs regarding organ donation among South Asian people in the UK

    Get PDF
    There is an acute shortage of organ donors in the UK, specifically among South Asian communities. This article reports the findings from the largest ever study undertaken among South Asian people in the UK that seeks to explore attitudes and beliefs towards organ donation. This article highlights that seemingly intractable factors, such as religion and culture, are often tied to more complex issues, such as distrust in the medical system and lack of awareness, that contribute to the shortage of organ donors among South Asian communities in the U

    Breast, cervical, and colorectal cancer screening rates amongst female Cambodian, Somali, and Vietnamese immigrants in the USA

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Minority women, particularly immigrants, have lower cancer screening rates than Caucasian women, but little else is known about cancer screening among immigrant women. Our objective was to assess breast, cervical, and colorectal cancer screening rates among immigrant women from Cambodia, Somalia, and Vietnam and explore screening barriers.</p> <p>Methods</p> <p>We measured screening rates by systematic chart review (N = 100) and qualitatively explored screening barriers via face-to-face questionnaire (N = 15) of women aged 50–75 from Cambodia, Somalia, and Vietnam attending a general medicine clinic (Portland, Maine, USA).</p> <p>Results</p> <p><it>Chart Review </it>– Somali women were at higher risk of being unscreened for breast, cervical, and colorectal cancer compared with Cambodian and Vietnamese women. A longer period of US residency was associated with being screened for colorectal cancer. We observed a 7% (OR 1.07, 95% CI 1.01–1.13, p = 0.01) increase in the odds that a woman would undergo a fecal occult blood test for each additional year in the US, and a 39% increase in the odds of a woman being screened by colonoscopy or flexible sigmoidoscopy for every five years of additional US residence (OR 1.39, 95% CI 1.21–1.61, p = 0.02). We did not observe statistically significant relationships between odds of being screened by mammography, clinical breast exam or papanicolaou test according to years in the US. <it>Questionnaire </it>– We identified several barriers to breast, cervical, and colorectal cancer screening, including discomfort with exams conducted by male physicians.</p> <p>Discussion</p> <p>Somali women were less likely to be screened for breast, cervical, and colorectal cancer than Cambodian and Vietnamese women in this population, and uptake of colorectal cancer screening is associated with years of residency in this country. Future efforts to improve equity in cancer screening among immigrants may require both provider and community education.</p

    Brain and blood biomarkers of tauopathy and neuronal injury in humans and rats with neurobehavioral syndromes following blast exposure

    Get PDF
    Traumatic brain injury (TBI) is a risk factor for the later development of neurodegenerative diseases that may have various underlying pathologies. Chronic traumatic encephalopathy (CTE) in particular is associated with repetitive mild TBI (mTBI) and is characterized pathologically by aggregation of hyperphosphorylated tau into neurofibrillary tangles (NFTs). CTE may be suspected when behavior, cognition, and/or memory deteriorate following repetitive mTBI. Exposure to blast overpressure from improvised explosive devices (IEDs) has been implicated as a potential antecedent for CTE amongst Iraq and Afghanistan Warfighters. In this study, we identified biomarker signatures in rats exposed to repetitive low-level blast that develop chronic anxiety-related traits and in human veterans exposed to IED blasts in theater with behavioral, cognitive, and/or memory complaints. Rats exposed to repetitive low-level blasts accumulated abnormal hyperphosphorylated tau in neuronal perikarya and perivascular astroglial processes. Using positron emission tomography (PET) and the [18F]AV1451 (flortaucipir) tau ligand, we found that five of 10 veterans exhibited excessive retention of [18F]AV1451 at the white/gray matter junction in frontal, parietal, and temporal brain regions, a typical localization of CTE tauopathy. We also observed elevated levels of neurofilament light (NfL) chain protein in the plasma of veterans displaying excess [18F]AV1451 retention. These findings suggest an association linking blast injury, tauopathy, and neuronal injury. Further study is required to determine whether clinical, neuroimaging, and/or fluid biomarker signatures can improve the diagnosis of long-term neuropsychiatric sequelae of mTBI

    Proteases as Insecticidal Agents

    Get PDF
    Proteases from a variety of sources (viruses, bacteria, fungi, plants, and insects) have toxicity towards insects. Some of these insecticidal proteases evolved as venom components, herbivore resistance factors, or microbial pathogenicity factors, while other proteases play roles in insect development or digestion, but exert an insecticidal effect when over-expressed from genetically engineered plants or microbial pathogens. Many of these proteases are cysteine proteases, although insect-toxic metalloproteases and serine proteases have also been examined. The sites of protease toxic activity range from the insect midgut to the hemocoel (body cavity) to the cuticle. This review discusses these insecticidal proteases along with their evaluation and use as potential pesticides
    • …
    corecore